Dissolvable membranes as sensing elements for microfluidics based biological/chemical sensors.
نویسندگان
چکیده
We demonstrate a chemical and biological sensing mechanism in microfluidics that transduces chemical and biological signals to electrical signals with large intrinsic amplification without need for complex electronics. The sensing mechanism involves a dissolvable membrane separating a liquid sample chamber from an interdigitated electrode. Dissolution of the membrane (here, a disulfide cross-linked poly(acrylamide) hydrogel) in the presence of a specific target (here, a reducing agent-dithiothreitol) allows the target solution to flow into contact with the electrode. The liquid movement displaces the air dielectric with a liquid, leading to a change (open circuit to approximately 1 kOmega) in the resistance between the electrodes. Thus, a biochemical event is transduced into an electrical signal via fluid movement. The concentration of the target is estimated by monitoring the difference in dissolution times of two juxtaposed sensing membranes having different dissolution characteristics. No dc power is consumed by the sensor until detection of the target. A range of targets could be sensed by defining membranes specific to the target. This sensing mechanism might find applications in sensing targets such as toxins, which exhibit enzymatic activity.
منابع مشابه
Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review.
Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered...
متن کاملReview of Recent Metamaterial Microfluidic Sensors
Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter-nanoliter sample for sensing. Simple design...
متن کاملA microfluidic chemical/biological sensing system based on membrane dissolution and optical absorption
A microfluidic system to sense chemical and biological analytes using membranes dissolvable by the analyte is demonstrated. The scheme to detect the dissolution of the membrane is based on the difference in optical absorption of the membrane and the fluidic sample being assayed. The presence of the analyte in the sample chemically cleaves the membrane and causes the sample to flow into the memb...
متن کاملOne-Dimensional Nanostructures: Microfluidic-Based Synthesis, Alignment and Integration towards Functional Sensing Devices
Microfluidic-based synthesis of one-dimensional (1D) nanostructures offers tremendous advantages over bulk approaches e.g., the laminar flow, reduced sample consumption and control of self-assembly of nanostructures. In addition to the synthesis, the integration of 1D nanomaterials into microfluidic chips can enable the development of diverse functional microdevices. 1D nanomaterials have been ...
متن کاملGlucose-Sensitive Holographic (Bio)Sensors: Fundamentals and Applications
Nowadays sensors and especially biosensors play an important role in medical diagnosis and detection of food and environment contaminations. Biosensors’ facilities have been improved significantly by using technologies such as surface plasmon resonance, microfluidics, laser, and electrochemistry. These technologies are now available on chips in micro- and nano-scale and are capable of mea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 6 7 شماره
صفحات -
تاریخ انتشار 2006